Showing posts with label TTC. Show all posts
Showing posts with label TTC. Show all posts

Monday, September 23, 2024

A 40 year old proof about top trading cycles is corrected (by two Berkeley grad students)

 Science (and math) can be self-correcting, sometimes slowly.  Here's an article that corrects the first proof that the top trading cycles algorithm is group strategy proof.  That's a true result, with multiple subsequent proofs.  But apparently the first proof presented wasn't the best one.  That's good to know.

One reason this may have taken a long time to spot is that the result is correct, and that there are subsequent proofs that connect the result to properties of other mechanisms.  

Will Sandholtz and Andrew Tai, the authors, did this work as Ph.D. students at UC Berkeley. (good for them!)

Group incentive compatibility in a market with indivisible goods: A comment  by Will Sandholtz and Andrew Tai

"Highlights

• Bird (1984), first to show top trading cycles is group strategy-proof, has errors.

•We present corrected results and proofs.

•We present a novel proof of strong group strategy-proofness without non-bossiness.

"Abstract: We note that the proofs of Bird (1984), the first to show group strategy-proofness of top trading cycles (TTC), require correction. We provide a counterexample to a critical claim and present corrected proofs in the spirit of the originals. We also present a novel proof of strong group strategy-proofness using the corrected results."

Monday, July 8, 2024

Top-trading-cycles for multiple-type housing markets by Di Feng , Bettina Klaus , and Flip Klijn

 On it's 50th anniversary, top trading cycles (TTC) is still well worth studying. Here's the latest:

Characterizing the typewise top-trading-cycles mechanism for multiple-type housing markets by Di Feng a, Bettina Klaus b, Flip Klijn , Games and Economic Behavior, Volume 146, July 2024, Pages 234-254

Abstract

"We consider the generalization of the classical Shapley and Scarf housing market model (Shapley and Scarf, 1974) to so-called multiple-type housing markets (Moulin, 1995). Throughout the paper, we focus on strict preferences. When preferences are separable, the prominent solution for these markets is the typewise top-trading-cycles (tTTC) mechanism.

"We first show that for lexicographic preferences, a mechanism is unanimous (or onto), individually rational, strategy-proof, and non-bossy if and only if it is the tTTC mechanism. Second, we obtain a corresponding characterization for separable preferences. We obtain additional characterizations when replacing [strategy-proofness and non-bossiness] with self-enforcing group (or pairwise) strategy-proofness. Finally, we show that for strict preferences, there is no mechanism satisfying unanimity, individual rationality, and strategy-proofness.

"Our characterizations of the tTTC mechanism constitute the first characterizations of an extension of the prominent top-trading-cycles (TTC) mechanism to multiple-type housing markets."

Saturday, May 18, 2024

Top Trading Cycles (TTC) is characterized by strategy proofness and individual rationality on a large set, by Özgün Ekici

 Here's a very nice result about TTC:

 Pair-efficient reallocation of indivisible objects, by Özgün Ekici, Theoretical Economics 19 (2024), 551–564

Abstract: We revisit the classical object reallocation problem under strict preferences. When attention is constrained to the set of Pareto-efficient rules, it is known that top trading cycles (TTC) is the only rule that is strategyproof and individually-rational. We relax this constraint and consider pair-efficiency. A rule is pair-efficient if it never induces an allocation at which a pair of agents gain from trading their assigned objects. Remarkably, even in the larger set of pair-efficient rules, we find that TTC is still the only rule that is strategyproof and individually-rational. Our characterization result gives strong support to the use of TTC in object reallocation problems.

Thursday, April 18, 2024

Top Trading Cycles (TTC) and the 50th anniversary of the Journal of Mathematical Economics

 This year marks the 50th anniversary of the Journal of Mathematical Economics, and also of the Top Trading Cycles (TTC) algorithm that was introduced in Volume 1, number 1 of the journal, in the paper by

Shapley, Lloyd, and Herbert Scarf. "On cores and indivisibility." Journal of mathematical economics 1, no. 1 (1974): 23-37. 

TTC was further analyzed in 

Roth, Alvin E., and Andrew Postlewaite. "Weak versus strong domination in a market with indivisible goods." Journal of Mathematical Economics 4, no. 2 (1977): 131-137.

Now the JME is assembling a 50th anniversary collection of papers surveying some of the resulting literatures, with some papers posted online ahead of publication. Here's what they had as of yesterday, including an article on Top Trading Cycles, by Morrill and Roth, and one on Housing markets since Shapley and Scarf, by Afacan, Hu, and Li:

JME’s 50th Anniversary Literature  Edited by Andres Carvajal and Felix Kübler

  1. Top trading cycles

    In Press, Journal Pre-proof, Available online 16 April 2024
    Article 102984
    View PDF
  2. Bubble economics

    April 2024
    Article 102944
    View PDF
  3. Stable outcomes in simple cooperative games

    April 2024
    Article 102960
    View PDF
  4. Fifty years of mathematical growth theory: Classical topics and new trends

    April 2024
    Article 102966
    View PDF
  5. Housing markets since Shapley and Scarf

    April 2024
    Article 102967
    View PDF

##########

At least one of the papers in the (virtual) special issue is already published, I gather that some will be in the June issue:

Monday, March 4, 2024

Monday, March 4, 2024

50th anniversary of Shapley and Scarf (1974), and of the Journal of Mathematical Economics

Now available online is the first in what I understand will be a series of papers commemorating the 50th anniversary of the Journal of Mathematical Economics.  The paper by Shapley and Scarf appeared in volume 1, number 1. (Thayer Morrill and I will have a paper surveying the literature on the Top Trading Cycle (TTC) algorithm, which was introduced in that first paper.)

Housing markets since Shapley and Scarf by Mustafa Oğuz Afacan, Gaoji Hu, and Jiangtao Li, Journal of Mathematical Economics, Available online 1 March 2024, In Press, Journal Pre-proof, https://doi.org/10.1016/j.jmateco.2024.102967

Abstract: Shapley and Scarf (1974) appeared in the first issue of the Journal of Mathematical Economics, and is one of the journal’s most impactful publications. As we approach the remarkable milestone of the journal’s 50th anniversary (1974–2024), this article serves as a commemorative exploration of Shapley and Scarf (1974) and the extensive body of literature that follows it.

Thursday, November 16, 2023

Top trading cycles 'respect improvements' by rewarding agents whose endowments become more desirable

 Here's a wide-ranging paper that explores the way the Top Tradinig Cycles (TTC) algorithm 'respects improvements' by rewarding an agent whose endowment becomes more desirable.

Biró, Péter, Flip Klijn, Xenia Klimentova, and Ana Viana. "Shapley–Scarf Housing Markets: Respecting Improvement, Integer Programming, and Kidney Exchange." Mathematics of Operations Research (2023).

"Abstract: In a housing market of Shapley and Scarf, each agent is endowed with one indivisible object and has preferences over all objects. An allocation of the objects is in the (strong) core if there exists no (weakly) blocking coalition. We show that, for strict preferences, the unique strong core allocation “respects improvement”—if an agent’s object becomes more desirable for some other agents, then the agent’s allotment in the unique strong core allocation weakly improves. We extend this result to weak preferences for both the strong core (conditional on nonemptiness) and the set of competitive allocations (using probabilistic allocations and stochastic dominance). There are no counterparts of the latter two results in the two-sided matching literature. We provide examples to show how our results break down when there is a bound on the length of exchange cycles. Respecting improvements is an important property for applications of the housing markets model, such as kidney exchange: it incentivizes each patient to bring the best possible set of donors to the market. We conduct computer simulations using markets that resemble the pools of kidney exchange programs. We compare the game-theoretical solutions with current techniques (maximum size and maximum weight allocations) in terms of violations of the respecting improvement property. We find that game-theoretical solutions fare much better at respecting improvements even when exchange cycles are bounded, and they do so at a low efficiency cost. As a stepping stone for our simulations, we provide novel integer programming formulations for computing core, competitive, and strong core allocations."

Here is their literature review:

"The nonemptiness of the core is proved in Shapley and Scarf [47] by showing the balancedness of the corresponding nontransferable utility game and also in a constructive way by showing that David Gale’s famous top trading cycles (TTC) algorithm always yields competitive allocations. Roth and Postlewaite [40] later show that, for strict preferences, the TTC results in the unique strong core allocation, which coincides with the unique competitive allocation in this case. However, if preferences are not strict (i.e., ties are present), the strong core can be empty or contain more than one allocation, but the TTC still produces all competitive allocations. Wako [50] shows that the strong core is always a subset of the set of competitive allocations. Quint and Wako [39] provide an efficient algorithm for finding a strong core allocation whenever there exists one. Their work is further generalized and simplified by Cechlárová and Fleiner [19], who use graph models. Wako [52] shows that the set of competitive allocations coincides with the core based on an antisymmetric weak domination concept, which we refer to as Wako-core in this paper. This equivalence is key for our extension of the definition of competitive allocations to the case of bounded exchange cycles.

1.2.2. Respecting Improvement.

"For Gale and Shapley’s [23] college admissions model, Balinski and Sönmez [11] prove that SOSM respects improvement of student’s quality. Kominers [29] generalizes this result to more general settings. Balinski and Sönmez [11] also show that SOSM is the unique stable mechanism that respects improvement of student quality. Abdulkadiroğlu and Sönmez [3] propose and discuss the use of TTC in a model of school choice, which is closely related to the college admissions model. Abdulkadiroğlu and Che [2] state and Hatfield et al. [25] formally prove that the TTC mechanism respects improvement of student quality.

"Hatfield et al. [25] also focus on the other side of the market and study the existence of mechanisms that respect improvement of a college’s quality. The fact that colleges can match with multiple students leads to a strong impossibility result: they prove that there is no stable or Pareto-efficient mechanism that respects improvement of a college’s quality. In particular, the (Pareto-efficient) TTC mechanism does not respect improvement of a college’s quality.

"In the context of KEPs with pairwise exchanges, the incentives for bringing an additional donor to the exchange pool was first studied by Roth et al. [42]. In the model of housing markets their donor-monotonicity property boils down to the respecting improvement property. They show that so-called priority mechanisms are donor-monotonic if each agent’s preferences are dichotomous, that is, the agent is indifferent between all acceptable donors. However, if agents have nondichotomous preferences, then any mechanism that maximizes the number of pairwise exchanges (so, in particular, any priority mechanism) does not respect improvement. This can be easily seen by means of Example 4 in Section 3.3.

#######

See also

The core of housing markets from an agent’s perspective: Is it worth sprucing up your home?  by Ildiko Schlotter, , Peter Biro, and Tamas Fleiner

Abstract. We study housing markets as introduced by Shapley and Scarf (1974). We investigate the computational complexity of various questions regarding the situation of an agent a in a housing market Hwe show that it is NP-hard to find an allocation in the core of H where (i) a receives a certain house, (ii) a does not receive a certain house, or (iii) a receives a house other than her own. We prove that the core of housing markets respects improvement in the following sense: given an allocation in the core of H where agent a receives a house h, if the value of the house owned by a increases, then the resulting housing market admits an allocation in its core in which a receives either h or a house that a prefers to h; moreover, such an allocation can be found efficiently. We further show an analogous result in the Stable Roommates setting by proving that stable matchings in a one-sided market also respect improvement.