In http://nypost.com/2014/06/08/the-science-of-immigration/, the NY Post notes that, since 2000, "immigrants have been awarded 24 of the 68 Nobel Prizes won by Americans in chemistry, medicine and physics."
My colleague Petra Moser looks particularly at the wave of immigration of German Jews after the Nazis took power: German Jewish Émigrés and U.S. Invention
"Our research provides new evidence on this question by examining the impact on innovation of German Jewish scientists who fled from Nazi Germany to the United States after 1932. Historical accounts suggest that these émigrés revolutionized U.S. innovation. In physics, for example, émigrés such as Leo Szilard, Eugene Wigner, Edward Teller, John von Neumann, and Hans Bethe formed the core of the Manhattan project that developed the atomic bomb. In chemistry, émigrés such as Otto Meyerhof (Nobel Prize 1922), Otto Stern (Nobel Prize 1943), Otto Loewi (Nobel Prize 1936), Max Bergmann, Carl Neuberg, and Kasimir Fajans “soon effected hardly less than a revolution. … Their work … almost immediately propelled the United States to world leadership in the chemistry of life” (Sachar 1992, p. 749).
Alternative accounts, however, suggest that émigrés’ contributions may have been limited due to administrative hurdles and antisemitism. Jewish scientists met with a “Kafkaesque gridlock of seeking affidavits from relatives in America [and] visas from less-than-friendly United States consuls” (Sachar 1992, p. 495). Once they were in the United States, a rising wave of antisemitism made it difficult for these scientists to find employment; in “the hungry 1930s, antisemitism was a fact of life among American universities as in other sectors of the U.S. economy” (Sachar 1992, p. 498).
Our paper presents a systematic empirical analysis of how German Jewish émigrés affected U.S. innovation. Taking advantage of the fact that patents are a good measure of innovation in chemistry, because chemical innovations are exceptionally suitable to patent protection (e.g., Cohen, Nelson, and Walsh 2002; Moser 2012), we focus on changes in chemical inventions. By comparison, the contributions of émigré physicists (including those who worked on the Manhattan Project) are difficult to capture empirically because they produced knowledge that was often classified and rarely patented.
...
"In sum, our research shows that high-skilled German Jewish immigrants created large and persistent benefits for innovators in the United States. In interpreting these results it is important to keep in mind that the émigrés in our data were exceptionally qualified scientists comparable to present-day academic superstars. Our analysis indicates that policies, which encourage the immigration of such scientists, can be an effective mechanism to encourage innovation.
This Research Brief is based on Moser, Voena, and Waldinger (2013), available at http://www.nber.org/papers/w19962. All works cited are provided there."
My colleague Petra Moser looks particularly at the wave of immigration of German Jews after the Nazis took power: German Jewish Émigrés and U.S. Invention
"Our research provides new evidence on this question by examining the impact on innovation of German Jewish scientists who fled from Nazi Germany to the United States after 1932. Historical accounts suggest that these émigrés revolutionized U.S. innovation. In physics, for example, émigrés such as Leo Szilard, Eugene Wigner, Edward Teller, John von Neumann, and Hans Bethe formed the core of the Manhattan project that developed the atomic bomb. In chemistry, émigrés such as Otto Meyerhof (Nobel Prize 1922), Otto Stern (Nobel Prize 1943), Otto Loewi (Nobel Prize 1936), Max Bergmann, Carl Neuberg, and Kasimir Fajans “soon effected hardly less than a revolution. … Their work … almost immediately propelled the United States to world leadership in the chemistry of life” (Sachar 1992, p. 749).
Alternative accounts, however, suggest that émigrés’ contributions may have been limited due to administrative hurdles and antisemitism. Jewish scientists met with a “Kafkaesque gridlock of seeking affidavits from relatives in America [and] visas from less-than-friendly United States consuls” (Sachar 1992, p. 495). Once they were in the United States, a rising wave of antisemitism made it difficult for these scientists to find employment; in “the hungry 1930s, antisemitism was a fact of life among American universities as in other sectors of the U.S. economy” (Sachar 1992, p. 498).
Our paper presents a systematic empirical analysis of how German Jewish émigrés affected U.S. innovation. Taking advantage of the fact that patents are a good measure of innovation in chemistry, because chemical innovations are exceptionally suitable to patent protection (e.g., Cohen, Nelson, and Walsh 2002; Moser 2012), we focus on changes in chemical inventions. By comparison, the contributions of émigré physicists (including those who worked on the Manhattan Project) are difficult to capture empirically because they produced knowledge that was often classified and rarely patented.
...
"In sum, our research shows that high-skilled German Jewish immigrants created large and persistent benefits for innovators in the United States. In interpreting these results it is important to keep in mind that the émigrés in our data were exceptionally qualified scientists comparable to present-day academic superstars. Our analysis indicates that policies, which encourage the immigration of such scientists, can be an effective mechanism to encourage innovation.
This Research Brief is based on Moser, Voena, and Waldinger (2013), available at http://www.nber.org/papers/w19962. All works cited are provided there."
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.